Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata.
نویسندگان
چکیده
Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12h post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131h post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies.
منابع مشابه
Draft genome sequence of Halomonas meridiana R1t3 isolated from the surface microbiota of the Caribbean Elkhorn coral Acropora palmata
Members of the gammaproteobacterial genus Halomonas are common in marine environments. Halomonas and other members of the Oceanospirillales have recently been identified as prominent members of the surface microbiota of reef-building corals. Halomonas meridiana strain R1t3 was isolated from the surface mucus layer of the scleractinian coral Acropora palmata in 2005 from the Florida Keys. This s...
متن کاملCoral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress
The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated wi...
متن کاملTracking Transmission of Apicomplexan Symbionts in Diverse Caribbean Corals
Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring), horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external br...
متن کاملGreen fluorescent protein regulation in the coral Acropora yongei during photoacclimation.
Reef-building corals inhabit high light environments and are dependent on photosynthetic endosymbiotic dinoflagellates for nutrition. While photoacclimation responses of the dinoflagellates to changes in illumination are well understood, host photoacclimation strategies are poorly known. This study investigated fluorescent protein expression in the shallow-water coral Acropora yongei during a 3...
متن کاملGenetic Identification of Symbiodinium in Genus Acropora off Farur Island, Persian Gulf
Coral reefs which form some of the most diverse ecosystems on Earth support many symbiotic relationships. Symbiodinium can provide up to 90% of a coral.s energy requirements. Temperature rise, turbid water and high salinity in the Persian Gulf were among the factors separating zooxanthellae from corals and result in bleaching phenomenon. Therefore, it is crucial to identify Symbiodinium of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Marine genomics
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2010